Transaction Recovery:
Advanced Topics & Implementation

Caetano Sauer

caetano.sauer@salesforce.com

= Hyper

About me

e 2008-2012: Moved to Germany from Brazil, BSc and MSc degrees at
TU Kaiserslautern
e 2012-2017: Obtained PhD at TU Kaiserslautern
o Topic: Transaction Recovery (today’s lecture!)
e 2017-today: Software Engineer in Hyper Team in Munich
(Tableau/Salesforce)

Agenda

Recap of the basics

Improving transaction throughput
Faster recovery

Availability while recovering

Media recovery

Agenda

Recap of the basics

Improving transaction throughput
Faster recovery

Availability while recovering

Media recovery

Page-oriented storage

" a b

Buffer pool Database

Write-ahead log

common metadata undo metadata redo mektadata
A A\

[| [\
L type length txn_id store_id txn_prev undo_nxt page_id page_id2 page_prev page_presz
So e

S~ e m—_-—
~~ e mmmm_-—-—
O ——
—
header data footer J
N _--" LSN order
\ - -
log head log tail

(archiving point)

(insertion point)

log records

Normal operation

Volatile system state

Dirty page table Active txn. table

PID | LSN TID | LSN
A X T, - Buffer pool
B y T, n

Database

write-ahead log :I]:[I]

System failure

Volatile system state

Buffer pool |

Database

ARIES restart

Volatile system state

Pages
requiring
REDO

Transactions

requiring
UNDO

ARIES restart

Volatile system state

Dirty page table Active txn. table

PID | LSN TID | LSN .
A N T1 m Buffer pool Database
B y T, | n undoLSN = max(m,n)

_ 1. Log analysis k
checkpoint LSN = >

LOG | 1] I
>

2. REDO scan 3. UNDO scan

redoLSN = min(x, y)

10

node == page with “mini data-structure”

Physiological logging

index/table == linked data structure of nodes

___________ N e

............... e PP

“logical within a page”

“physical to a page”
OO [.. 5

r ‘I Being able to perform page-oriented redo
allows the system to provide recovery independence amongst objects. ’ ,

Logical UNDO with compensation

Redo Undo
!] \
@@ @@ @@
T UndoNextLSN ‘ I

= CLRs (compensating log records) for undone changes
= #7'is a CLR for #7
= #4' is a CLR for #4

* Diagram from Thomas Neumann

Logical UNDO with compensation

e Why logical?
o Record-level locking instead of page-level locking
o Data structure maintenance independent of transaction logic
m Records might move to another page
o Same logic for system restart (recovery operation) and transaction abort (normal operation)

e Why compensation log records?
o Idempotent restart, i.e.,, make progress if system keeps failing
o Convert UNDO actions into REDO actions
o Sounds wasteful, but it’s key for a simple, high-performing architecture!

e Repeating history principle
o REDO everything first, so the system state is exactly as it was before crash
o Allows for a simpler architecture with better separation of concerns

[f you remember one thing from today...

Separation of concerns in transaction processing!

Relational tables
UNDO actions

Locks, long duration K 1
“Isolation” of ACID ey-value store

User transactions

REDO actions

Latches, short duration
Data-structure thread safety
System transactions

‘ Buffer management

Page store

File system

ARIES Recap

e Three phases of recovery
e Key principle 1: Physiological logging
e Key principle 2: Logical UNDO with compensations

e Why logical logging is a bad idea

ARIES Recap

e Three phases of recovery

e Key principle 1: Physiological logging

e Key principle 2: Logical UNDO with compensations
e Why logical logging is a bad idea

Why logical logging is a bad idea (rant slide)

1. Recovery is way slower

a. Same effort as normal operation

b. Cannot run in parallel, otherwise might get a different serializable history

c. All actions must be deterministic

d. Checkpoints are very expensive, so not taken very often, so recovery even slower!
2. Normal operation is not necessarily faster

a. Some form of in-memory logging (or MVCC) still required for transaction abort

b. Overhead of writing those logs to disk is saved, but that’s not on the critical path (more on this later)
3. Might compromise crucial features

a. Indexing, space management, partial rollback, media recovery, ...

4. Itis bad economics
a. SSDs are fast and cheap; use them!
b. Check out Viktor Leis’ LeanStore project

Agenda

e Recap of the basics

e Improving transaction throughput
e Faster recovery

e Availability while recovering

e Media recovery

Key principles for faster normal operation

: s \
1. Remove logging from critical path
a. Writing from main memory to SSD
i. Group commit
ii. Early lock release > rocus
ii. arly lock re today
b. Writing from CPU to main memory
i. Concurrent log buffers
ii. Log partitioning J

2. Logless data
a. Log-record compression
b. No-steal approaches (a.k.a., no-UNDO recovery)

Log buffer

£
Tl TZ g T3
(&)
log buffer
>| >I >
already flushed to be flushed in use

e Log buffer is an in-memory data structure; how to allow fast, concurrent operations on it?
o

How to maintain correct transaction semantics in the presence of failures?
o Durability of committed transactions
o Handle partial writes
o Avoid “holes” in the log

S ources Of COntentl on R. Johnson et al.: Aether: A Scalable Approach to Logging, VLDB 2010

Done!

@ WALE Com_rr_1i:c___ _% j
e 1 WML 7/ N0

Time

[] Lock Mgr. Log Mgr. W\ Working l___:' Waiting

Figure 1. A timeline of two transactions illustrating four kinds of
log-imposed delay: (A) I/O-related delays, (B) increased lock con-
tention, (C) scheduler overload, and (D) log buffer contention.

Group Commit

Key technique for scalability, already used in in-memory databases of the 80’s

e Transactions don’t commit as soon as they are ready, but rather accumulate in a
buffer, so that multiple commits can happen with a single I/O operation

e Trades off latency for throughput =

e Thread that was working on T2
can do some other work
e Dedicated log-flushing thread
writes out log and notifies clients <~ - LOS buffer
waiting for commit S e
~
(asynchronously) ~

already flushed

to be flushed in use

Early Lock Release

e What happens when a transaction commits:
a. Append commit log record to the log buffer
b. Wait for all logs until commit log record to be made durable (I/0 latency)
c. Release all locks (in two-phase locking)
e Problem: Other transactions will wait for step c, which involves an [/O operation

a. Transaction throughput unavoidably decreases

e Solution: swap steps b and c!

Early Lock Release

e Safe, as long as order constraints are persisted
o T1 writes a value x, appends a commit log record, and releases its lock
o T2 now reads x and commits
o Crash happens!
o Alllogrecords of T1 must be present in the log before T2’s commit log record
e A centralized, sequential log easily avoids these problems
o Alllogrecords before a commit log record must be persisted before acknowledging a commit

e Key distinction: pre-commit != commit acknowledgement

R. Johnson et al.: Aether: A Scalable Approach to Logging, VLDB 2010

Aether
(B) Baseline Consolidation array (C)
Pt Pt
| pesmsasmsene N A § : r;::::::::::%
| | e L 7|
ttt ttt
1
w @ = A B
H B~ B
iR= REEs
ttt ttt
(D) Decoupled buffer insert Hybrid design (CD)
¢ Start/finish [] Mutex held

-- Waiting Copy into buffer

Figure 6. Illustrations of several log buffer designs. The baseline
system can be optimized for shorter critical path (D), fewer threads
attempting log inserts (C), or both (CD)

Log partitioning

e
TI—T2 T3+ T4

Partition log by page
Llogl Log2 Log3 Log4

B FEE PR FEE

T1 T2 T3 T4

I N
B8 FEE DEE

logl Log2 Log3 Log4
Partition log by xct

Partitioning by transaction performs better, due to
locality and CPU affinity

Challenge: keep track of dependencies and avoid holes
in the log

@)

GSN approach

Wang T, Johnson R.: Scalable Logging through
Emerging Non-Volatile Memory, VLDB 2014

GSN = Global Sequence Number

e Assigns a GSN counter to each
txn, each page, and each log
e Page GSN

o Last modification done to this page,
incremented with every modification
together with the Txn GSN

e Txn GSN
o Highest Page GSN seen by this txn so

far
e LogGSN
o Highest GSN inserted into this log so
far

Page Access GSN increment
—
I
TXN; GsN7 +1>G\SN8 > IGSN7+—1ESN8 -
N |
TXN; Gsn2 L § GSN2 L
X'\/
! oy
) GSN1 - 1 GSN1
GSN8 GSN9 | GSN8
GSN5
25 GSN4 > 1 GSN4 ,

(a) Same Page I (b) Independent

Figure 1: GSNs establish a partial order between log
records sufficient for recovery. If two changes depend
on each other, the second one will have a higher GSN
(a). For independent changes, GSNs are unordered (b).

M. Haubenschild et al.: Rethinking Logging, Checkpoints, and
Recovery for High-Performance Storage Engines, SIGMOD 2020

Group commit with GSN

e Wang & Johnson, VLDB 2014: Passive Group Commit

o When txn commits, flush its own log and wait asynchronously on a queue until all other logs have
been flushed up to the GSN of its commit log record.

e Haubenschild et al., SIGMOD 2020: Remote Flush Avoidance

o Improves latency with a lightweight dependency tracking mechanism (better for NVM)
o Txn only needs “remote flush” if it touched a page whose GSN was not durable at the time the txn
started AND if any of those updates were logged on a different log

Logical Dependencies : ARIES : Distributed Logging : Remote Flush Avoidance
Tx, TX, 1 Log 1 Partition 1 Partition 2 Partitionn 1 Partition 1 Partition 2 Partition n
1] 1
UPDATE(P,,b;) 1 & ' & & & ' & & &
INSERT(P,.a,) : | i
INSERT(Po,b) 4 ; ‘
COMMIT(Tx,) : X /1 :
COMMIT(TX,) 4 i .y i
1 1 1
1 1 1
1 X globallatch 1+ X flushes on n partitions 1 /no contention /no remote flushes

Figure 3: Two independent transactions and the synchronizing operations in different logging strategies.

Recovery with partitioned logs

1. Partition logs

Log Partition 1

Log Partition 2

worker 2

by page id

o—

p2,GSN1

.—

p4,GSN7

p5,GSNG6

p2,GSN5

!

p6,GSN5

p1,GSN3|-

!

p5,GSN4

2. Merge, Sort
& Redo

p2,GSN1

p2,GSN5

pl,GSN8

p6,GSN7

p4,GSN7

p4,GSN8

p5,GSN4

p5,GSN8

opay

opay

M. Haubenschild et al.

Summary of techniques to improve throughput

Group commit: reduce OS scheduling overhead; hide I/0 latency

Early lock release: remove log-induced contention on logical locks
Consolidated buffer inserts (Aether): reduce contention on a single log buffer
Log partitioning: remove contention with multiple log buffers

Agenda

Recap of the basics

Improving transaction throughput
Faster recovery

Availability while recovering

Media recovery

Key principles for faster recovery

1. Fuzzy checkpoints
2. Fast page cleaning & provisioning
3. Parallel UNDO and REDO (more on this later, on availability section)

Fuzzy checkpoints

e “fuzzy” = does not capture global state at a frozen instant in time (i.e., inconsistent)
e Must happen continuously, in the background, without disrupting transactions
e System state != Database state

o Checkpointer saves the state of volatile data structures: page table, txn. table, lock table, etc.

o Page cleaner writes the contents of pages from buffer pool to database (more on this later)
e Effect on recovery phases

o Checkpoints shorten log analysis

o Page cleaner reduces REDO work
o Nothing reduces UNDO work, because it depends on user activity

Fuzzy checkpoints

Volatile system state

~ e

‘Dirty page table; Active txn. table, —
' Checkpoint LSN

1
1
1
1
1
1
1
1
1
1
1
]

1
| 1 .
! ’/
1 P
LBy o 3
\ l\‘ ———————————
\\\ 2 R
1 \\\\\ ”“— _____
/’/ S . \\‘
'I/ \‘V ‘v
begin_chkpt end_chkpt

Checkpointer + user activity

Fuzzy checkpoints

e Low disruption
o No database contents are inspected, only auxiliary data structures
o Data structures should support fuzzy, low-overhead scans (no global locks)

e How is it OK to have fuzzy state?

o Tables will definitely change while checkpoint is happening

o BUT: any relevant state change is also logged!

o Thus, log analysis will read the tables from the checkpoint and update them as the log is scanned,
reaching a consistent system state, as it was immediately before the crash

e What if system crashes while checkpoint is happening?
o Checkpoint only considered complete if CheckpointLSN is updated, which happens atomically
o Incomplete checkpoints are ignored
o Alternative design: scan log backwards during log analysis phase and look for matching begin &
end log records

Page cleaning

x Running transactions

‘) (page dirtying)

Dirty page backlog

Page cleaning

Trade-off curve of page cleaning

Full Log Replay

., Force Strategy

Recovery Time

Write Amplification

Challenges of page cleaning

e Strike a balance between opposing goals:

o Bound recovery time
o Avoid wasting write bandwidth

e Make sure new pages can be allocated without delay (provisioning)
o Essential for insertion-heavy workloads like TPC-C

e Execute as a continuous process without any I/0 bursts or online disruptions

in-memory (100GB buf.) out-of-memory (40GB buf.)

Our approach

— WiredTiger (WT)

- WT w/o checkpointing
WT w/o chkpt. or logging

()] ~
o ()]
o o

TPC-C [ktxn/s]
nN
(é)]
o

sk,
0 25 50 75 100 0 25 50 75 100
runtime [seconds] M. Haubenschild et al.

o
1

Page cleaning & provisioning

< read page / new page 1%
0

900/s | Free
10%
50

Cool /Lersis;
00>

d
< _Wworkers |

M

Figure 6: The division of LeanStore’s buffer pool into
hot (swizzled), cool (unswizzled) and free pages. Ac-
tions in the system cause pages to transition between
the states. In steady state, worker threads request ex-

actly as many free pages as the page provider supplies. M. Haubenschild et al.

Continuous page cleaning

e Key idea: maintain a bound on the log size, and
let log archiving process trigger cleaning of the
buffer pool in small increments (shards)

e No bursts of activity or disruptions

e Redo recovery effort always bounded

WAL Shard b,(GSN32| |[GSN48
GSN8
) Y o 0@ Page A ||Page N
NP S i\t I
X > 62 : &2 Shard b,|GSN8 | |[GSN19

= f © Checkpointer

- Ne
= Persisted GSN
GSN34

= E EE

GSN46 | GSNS8
GSN24 GSN32|
N Page A _—HSNS -
Active Transactions Pageis
#|first GSN|current GSN . ¢%} GSNS] A
Txn;| GSN25 GSN27 minActiveTxGsn: GSN25 Page F B
Txn,| GSN32| GSN48 PageD

Figure 5: Checkpointing example. The frequency of
checkpoint increments is coupled to WAL volume.

M. Haubenschild et al.

Agenda

Recap of the basics

Improving transaction throughput
Faster recovery

Availability while recovering

Media recovery

Key insight for higher availability

e Apply same recovery actions, just on a different schedule
o Prioritize needs of application right after system failure
o Reuse same concurrency protocols of normal operation (two-phase locking, buffer-pool latches)
to guarantee correctness

ARIES optimization: concurrent UNDO

Volatile system state
Dirty page table T —— Lock table e Acquire and release locks during REDO

pID | LSN TID | LSN Locks| TID e Instead of UNDO log scan, abort loser
transactions in parallel
A X T, L e Follow UndoNext chain in the log or build
B y T, n stack of undo log records

1. Log analysis

oo L _TIC T TTT |

2. REDO scan

>

‘ works, but UNDO phase is usually negligible

Linked log records

A A

—

page

txXn

type lsn id page_prv brey data

split 100 A, C | 20, null “split page A into C”

ins 120 C 100 null “insert record x into C”

upd 140 B 80 60 “update record y - y’ in B”

rebl 160 A, C | 100, 120 “rebalance records between A and C”

upd 180 C 160 140 “update record w -» w’ in C”

ins 200 G 180 120 “insert record z into C”
per-page per-transaction
log chains log chains

1

2

Instant restart

(post-failure)

Graefe et al.: Instant Recovery with Write-Ahead Logging: Page Repair,

System Restart, Media Restore, and System Failover, Second Edition.
Synthesis Lectures on Data Management, 2016

Running txn. - - loc lf(? Volatile system state
fiX(B)\ "L Dirty page table Lock and txn. table
* B Locks| TID
\ bd | T,
Buffer pool — Tt f T 5
R
LOG I I

lock
conflict!

~—

~
~

~
N

A |

Aborting txn.

(pre-failure)

on demand, prioritizing application needs

same recovery actions, different schedule

45

Agenda

Recap of the basics

Improving transaction throughput
Faster recovery

Availability while recovering

Media recovery

Media failure

Volatile system state

Dirty page table Active txn. table

PID | LSN TID | LSN
A X T, - Buffer pool
B y T, n

Database

Replacement

device

Backup

Log archive

o [L [T T IT 11

C. Sauer et al.: Single-pass restore after a media failure,
BTW 2015

Single-pass restore

Full backup

sequential

merge join sequential
writes

A

Buffer pool Replacement
drive

Partlally fix A, replay all updates, unfix
sorted lOg R1 fix B, replay all updates, unfix
archive @

R2

C. Sauer et al.: Instant restore after a media failure, ADBIS 2017

Instant restore

Full backup segment-wise segment-wise

merge join B writes
A A|B

Buffer pool Replacement
drive

Indexed log
archive

P

FineLine

Write-ahead logging:

Data :
structure

Database

—write

append

o000

Log records

volatile : persistent

C. Sauer et al.: FineLine: Log-structured transactional
storage and recovery, VLDB 2019

FineLine:

Data
structure

fetch

reorg.

Log
index

m append

Log records

volatile - persistent

50

Thank you!

caetano.sauer@salesforce.com

= Hyper

