
Transaction Recovery:
Advanced Topics & Implementation

Caetano Sauer
caetano.sauer@salesforce.com

About me

● 2008-2012: Moved to Germany from Brazil, BSc and MSc degrees at

TU Kaiserslautern

● 2012-2017: Obtained PhD at TU Kaiserslautern

○ Topic: Transaction Recovery (today’s lecture!)

● 2017-today: Software Engineer in Hyper Team in Munich

(Tableau/Salesforce)

Agenda

● Recap of the basics

● Improving transaction throughput

● Faster recovery

● Availability while recovering

● Media recovery

Agenda

● Recap of the basics

● Improving transaction throughput

● Faster recovery

● Availability while recovering

● Media recovery

Page-oriented storage

A BA

B

Buffer pool Database

Write-ahead log

log records

...

header data footer

log head
(archiving point)

log tail
(insertion point)

LSN order

type txn_id store_id txn_prev undo_nxt page_id page_id2 page_prev page_prev2

redo metadataundo metadata

length

common metadata

A BA

B

Buffer pool DatabaseA

B

PID LSN

x

y

Dirty page table

T
1

TID LSN

m

n

Active txn. table

T
2

write-ahead log

Normal operation

7

Volatile system state

A BA

B

Buffer pool DatabaseA

B

PID LSN

x

y

Dirty page table

T
1

TID LSN

m

n

Active txn. table

T
2

System failure

Volatile system state

LOG

ARIES restart

Volatile system state

A BA

B

Buffer pool Database

LOG

Pages
requiring

REDO

Transactions
requiring

UNDO

A BA

B

Buffer pool Database

redoLSN = min(x, y)

A

B

PID LSN

x

y

Dirty page table

T
1

TID LSN

m

n

Active txn. table

T
2

1. Log analysis

undoLSN = max(m,n)

checkpoint LSN

ARIES restart

10

LOG

Volatile system state

2. REDO scan 3. UNDO scan

Physiological logging

index/table == linked data structure of nodes

node == page with “mini data-structure”

“physical to a page”
“logical within a page”

“
”

Logical UNDO with compensation

* Diagram from Thomas Neumann

Logical UNDO with compensation

● Why logical?
○ Record-level locking instead of page-level locking
○ Data structure maintenance independent of transaction logic

■ Records might move to another page
○ Same logic for system restart (recovery operation) and transaction abort (normal operation)

● Why compensation log records?
○ Idempotent restart, i.e., make progress if system keeps failing
○ Convert UNDO actions into REDO actions
○ Sounds wasteful, but it’s key for a simple, high-performing architecture!

● Repeating history principle
○ REDO everything first, so the system state is exactly as it was before crash
○ Allows for a simpler architecture with better separation of concerns

If you remember one thing from today…

Separation of concerns in transaction processing!

Key-value store

Page store

Relational tables

File system

UNDO actions
Locks, long duration

“Isolation” of ACID
User transactions

REDO actions
Latches, short duration
Data-structure thread safety
System transactions
Buffer management

ARIES Recap

● Three phases of recovery

● Key principle 1: Physiological logging

● Key principle 2: Logical UNDO with compensations

● Why logical logging is a bad idea

ARIES Recap

● Three phases of recovery

● Key principle 1: Physiological logging

● Key principle 2: Logical UNDO with compensations

● Why logical logging is a bad idea

Why logical logging is a bad idea (rant slide)

1. Recovery is way slower
a. Same effort as normal operation
b. Cannot run in parallel, otherwise might get a different serializable history
c. All actions must be deterministic
d. Checkpoints are very expensive, so not taken very often, so recovery even slower!

2. Normal operation is not necessarily faster
a. Some form of in-memory logging (or MVCC) still required for transaction abort
b. Overhead of writing those logs to disk is saved, but that’s not on the critical path (more on this later)

3. Might compromise crucial features
a. Indexing, space management, partial rollback, media recovery, …

4. It is bad economics
a. SSDs are fast and cheap; use them!
b. Check out Viktor Leis’ LeanStore project

Agenda

● Recap of the basics

● Improving transaction throughput

● Faster recovery

● Availability while recovering

● Media recovery

Key principles for faster normal operation

1. Remove logging from critical path
a. Writing from main memory to SSD

i. Group commit
ii. Early lock release

b. Writing from CPU to main memory
i. Concurrent log buffers

ii. Log partitioning

2. Log less data
a. Log-record compression
b. No-steal approaches (a.k.a., no-UNDO recovery)

Focus
today

Log buffer
T

1
T

2 T
3

to be flushed

co
m

m
it

log buffer

already flushed in use

● Log buffer is an in-memory data structure; how to allow fast, concurrent operations on it?
● How to maintain correct transaction semantics in the presence of failures?

○ Durability of committed transactions
○ Handle partial writes
○ Avoid “holes” in the log

Sources of contention R. Johnson et al.: Aether: A Scalable Approach to Logging, VLDB 2010

Group Commit

● Key technique for scalability, already used in in-memory databases of the 80’s
● Transactions don’t commit as soon as they are ready, but rather accumulate in a

buffer, so that multiple commits can happen with a single I/O operation
● Trades off latency for throughput

T
1

T
2 T

3

to be flushed

co
m

m
it

log buffer

already flushed in use

● Thread that was working on T2
can do some other work

● Dedicated log-flushing thread
writes out log and notifies clients
waiting for commit
(asynchronously)

Early Lock Release

● What happens when a transaction commits:
a. Append commit log record to the log buffer
b. Wait for all logs until commit log record to be made durable (I/O latency)
c. Release all locks (in two-phase locking)

● Problem: Other transactions will wait for step c, which involves an I/O operation
a. Transaction throughput unavoidably decreases

● Solution: swap steps b and c!

Early Lock Release

● Safe, as long as order constraints are persisted
○ T1 writes a value x, appends a commit log record, and releases its lock
○ T2 now reads x and commits
○ Crash happens!
○ All log records of T1 must be present in the log before T2’s commit log record

● A centralized, sequential log easily avoids these problems
○ All log records before a commit log record must be persisted before acknowledging a commit

● Key distinction: pre-commit != commit acknowledgement

Aether
R. Johnson et al.: Aether: A Scalable Approach to Logging, VLDB 2010

Log partitioning

Wang T., Johnson R.: Scalable Logging through
Emerging Non-Volatile Memory, VLDB 2014

● Partitioning by transaction performs better, due to
locality and CPU affinity

● Challenge: keep track of dependencies and avoid holes
in the log
○ GSN approach

GSN = Global Sequence Number

● Assigns a GSN counter to each
txn, each page, and each log

● Page GSN
○ Last modification done to this page,

incremented with every modification
together with the Txn GSN

● Txn GSN
○ Highest Page GSN seen by this txn so

far

● Log GSN
○ Highest GSN inserted into this log so

far

M. Haubenschild et al.: Rethinking Logging, Checkpoints, and
Recovery for High-Performance Storage Engines, SIGMOD 2020

Group commit with GSN

● Wang & Johnson, VLDB 2014: Passive Group Commit
○ When txn commits, flush its own log and wait asynchronously on a queue until all other logs have

been flushed up to the GSN of its commit log record.

● Haubenschild et al., SIGMOD 2020: Remote Flush Avoidance
○ Improves latency with a lightweight dependency tracking mechanism (better for NVM)
○ Txn only needs “remote flush” if it touched a page whose GSN was not durable at the time the txn

started AND if any of those updates were logged on a different log

Recovery with partitioned logs

M. Haubenschild et al.

Summary of techniques to improve throughput

● Group commit: reduce OS scheduling overhead; hide I/O latency
● Early lock release: remove log-induced contention on logical locks
● Consolidated buffer inserts (Aether): reduce contention on a single log buffer
● Log partitioning: remove contention with multiple log buffers

Agenda

● Recap of the basics

● Improving transaction throughput

● Faster recovery

● Availability while recovering

● Media recovery

Key principles for faster recovery

1. Fuzzy checkpoints
2. Fast page cleaning & provisioning
3. Parallel UNDO and REDO (more on this later, on availability section)

Fuzzy checkpoints

● “fuzzy” = does not capture global state at a frozen instant in time (i.e., inconsistent)
● Must happen continuously, in the background, without disrupting transactions
● System state != Database state

○ Checkpointer saves the state of volatile data structures: page table, txn. table, lock table, etc.
○ Page cleaner writes the contents of pages from buffer pool to database (more on this later)

● Effect on recovery phases
○ Checkpoints shorten log analysis
○ Page cleaner reduces REDO work
○ Nothing reduces UNDO work, because it depends on user activity

Fuzzy checkpoints

A

B

PID LSN

x

y

Dirty page table

T
1

TID LSN

m

n

Active txn. table

T
2

Volatile system state

LOG

begin_chkpt end_chkpt
Checkpointer + user activity

Checkpoint LSN

1

2

3

Fuzzy checkpoints

● Low disruption
○ No database contents are inspected, only auxiliary data structures
○ Data structures should support fuzzy, low-overhead scans (no global locks)

● How is it OK to have fuzzy state?
○ Tables will definitely change while checkpoint is happening
○ BUT: any relevant state change is also logged!
○ Thus, log analysis will read the tables from the checkpoint and update them as the log is scanned,

reaching a consistent system state, as it was immediately before the crash

● What if system crashes while checkpoint is happening?
○ Checkpoint only considered complete if CheckpointLSN is updated, which happens atomically
○ Incomplete checkpoints are ignored
○ Alternative design: scan log backwards during log analysis phase and look for matching begin &

end log records

Page cleaning

Running transactions
(page dirtying)

Page cleaning

Dirty page backlog

Trade-off curve of page cleaning

Challenges of page cleaning

● Strike a balance between opposing goals:
○ Bound recovery time
○ Avoid wasting write bandwidth

● Make sure new pages can be allocated without delay (provisioning)
○ Essential for insertion-heavy workloads like TPC-C

● Execute as a continuous process without any I/O bursts or online disruptions

M. Haubenschild et al.

Page cleaning & provisioning

M. Haubenschild et al.

Continuous page cleaning

M. Haubenschild et al.

● Key idea: maintain a bound on the log size, and
let log archiving process trigger cleaning of the
buffer pool in small increments (shards)

● No bursts of activity or disruptions
● Redo recovery effort always bounded

Agenda

● Recap of the basics

● Improving transaction throughput

● Faster recovery

● Availability while recovering

● Media recovery

Key insight for higher availability

● Apply same recovery actions, just on a different schedule
○ Prioritize needs of application right after system failure
○ Reuse same concurrency protocols of normal operation (two-phase locking, buffer-pool latches)

to guarantee correctness

2. REDO scan

A

B

PID LSN

x

y

Dirty page table

T
1

TID LSN

m

n

Active txn. table

T
2

1. Log analysis

ARIES optimization: concurrent UNDO

works, but UNDO phase is usually negligible

LOG

Volatile system state

T
1

Locks TID

b,d

f

Lock table

T
2

● Acquire and release locks during REDO
● Instead of UNDO log scan, abort loser

transactions in parallel
● Follow UndoNext chain in the log or build

stack of undo log records

Linked log records

Volatile system state

Instant restart

B

Buffer pool

Dirty page table

A

B

PID LSN

x

y

Lock and txn. table

T
1

T
2

Locks TID

b,d

f

fix(B)

Aborting txn.
(pre-failure)

Running txn.
(post-failure)

lock(f)

lock
conflict!

...LOG

same recovery actions, different schedule
45

on demand, prioritizing application needs

Graefe et al.: Instant Recovery with Write-Ahead Logging: Page Repair,
System Restart, Media Restore, and System Failover, Second Edition.

Synthesis Lectures on Data Management, 2016

Agenda

● Recap of the basics

● Improving transaction throughput

● Faster recovery

● Availability while recovering

● Media recovery

A BA

B

Buffer pool DatabaseA

B

PID LSN

x

y

Dirty page table

T
1

TID LSN

m

n

Active txn. table

T
2

Media failure

Volatile system state

LOG

Replacement
device

Backup

Log archive

A B

A B
A

B

Full backup

Incr.
backups

Buffer pool Replacement
drive

sequential
writes

fix A, replay all updates, unfix
fix B, replay all updates, unfix

.
.
.

sequential
merge join

...

...

...

Partially
sorted log

archive

R0

R1

R2

Single-pass restore

OBSOLETE

C. Sauer et al.: Single-pass restore after a media failure,
BTW 2015

A B
A B

Full backup

A

B

Buffer pool Replacement
drive

segment-wise
merge join

segment-wise
writes

...P0 P1 P2

Instant restore

Indexed log
archive

C. Sauer et al.: Instant restore after a media failure, ADBIS 2017

Log records

Data
structure

fetch

append

Log
index

reorg.

volatile persistent

FineLine:

WAL
Log records

Database

Data
structure

write

read

volatile persistent

append

Write-ahead logging:

FineLine

50

C. Sauer et al.: FineLine: Log-structured transactional
storage and recovery, VLDB 2019

Thank you!
caetano.sauer@salesforce.com

